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Abstract—Radio Frequen
cy (RF) pulse c

ompressors are
used in

linear accelera
tors (Linac) to

achieve high po
wer levels by s

hort-

ening the RF pulse length. In
their original fo

rm, the phase o
f the

incoming pulse
is reversed by 180 which generates a hig

h peak

power at the ou
tput of the puls

e compressor, f
ollowed by an e

xpo-

nential decay.
This pulse shap

e however is n
ot appropriate

with

regard to timing stabi
lity as well as f

or having equa
l energy gain

for multi-bunch
operation. To a

chieve flat-topp
ed pulses, a met

hod

has been previo
usly proposed t

hat analytically
modulates the i

nput

phase waveform
. In the present

contribution an
alternative way

to

producing flat-t
oppedRF pulse

s is proposedwh
ich is based on I

ter-

ative Learning
Control techniq

ues. This appro
ach manipulate

s the

input waveform
s iteratively in o

rder to generat
e flat-topped am

pli-

tude and phase
pulses at the ou

tput of the puls
e compressor.

Index Terms—
Free electron laser, iterative

learning control,

linear accelerat
or, pulse compr

essor, radio fre
quency control

.

I. INTRODUCTI
ON

T HE SwissFEL machine, curre
ntly being developed and

constructed at the Paul Sch
errer Institut, w

ill provide a

source of bright and short X-ray pulses [1]. The
SwissFEL

C-band (5.712
GHz) Linac inc

ludes 26 Radio
Frequency (RF)

stations. In each station, the kly
stron delivers high RF power

to a pulse compressor fol
lowed by four normal-co

nducting

accelerating str
uctures [2]. Th

e pulse compre
ssor is a passiv

e

device used to store the energy and release it under certain

conditions [3]. I
t essentially con

verts a long RF
pulse to a short

one with much h
igher peak RF m

agnitude. The S
wissFEL pulse

compressor is d
esigned based o

n a single Barre
l Open Cavity

(BOC) which h
as a high qualit

y factor resultin
g in a relatively

long filling time and significant ener
gy storage capacit

y (see

Fig. 1) [4]. In
the original form of RF pulse compression,

commonly referred to as the “phase j
ump” regime, t

he input

phase is flipped
by , generating a r

eflected wave i
nto the

acceleration structures. This
transient high RF power decays
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Fig. 1. The pulse comp
ressor based on

a single Barrel
Open Cavity. T

he

and denote the inpu
t and output for

ward voltages.

relatively slowly which gives enough time to the structures

to build up an accelerating gradient much
higher than using

the klystron alone. Howeve
r, this pulse sh

ape is not suita
ble

for multi-bunch
operation where it is often required that all

bunches experie
nce the same R

F amplitude and
phase through

the structures. M
oreover, due to

the spiky shape
of the pulse,

the resulting acc
elerating gradie

nt is very sensit
ive to the timing

jitters. To cope with this problem, a
more complicated form

of pulse compr
ession was introduced

which is referred to as

the “phase mod
ulation”[3]. In

this method, th
e input phase is

reversed very slowly so that the peak amplitude of th
e pulse

compressor out
put is lowered a

nd flattened.

The SwissFEL machine operates in a pulsed mode at the

bunch repetition
rate of 100 Hz,

using normal co
nducting struc-

tures. The RF p
ulse length is of

the order of
s and no dig-

ital RF feedbac
k loop is used w

ithin a pulse. It
erative learning

control (ILC) i
s a control tech

nique for syste
ms that operate

in a repetitive, or
run-to-run, man

ner [5], [6], [7]
, [8], [9]. In

this method, the
measured trajec

tory is compare
d to the desired

one to give an
error estimate.

The error is the
n used to updat

e

the inputs for t
he next run. Fo

r our problem,
i.e. controlling

the pulse wavef
orm, iterative c

ontrol is a good
approach since

no intra-pulse feed
back loop is feasible. Prev

iously in [10], a

model-free ILC
algorithm was developed t

o control the kly
stron

RF pulses. Ano
ther method has

been studied in
[11] which is a

model-based ILC using subspace system
identification [5

]. In

contrast to mod
el-free ILC, mo

del-based ILC methods exploi
t

a model of the
plant in determining the updated inputs. This

comes at the cos
t of additional e

ffort in identifyi
ng or modelling
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Pulse compression to achieve 
higher accelerating gradients

• AKA “SLED” - SLAC Linac Energy 
Doubler 

• Idea: Take the relatively long RF pulse 
generated by a klystron (around 3 μs), 
and compress it to achieve a higher 
amplitude pulse over a shorter time 
(around 0.7 μs). 

• How? Feed the klystron pulse into an 
RF cavity, then find some way to 
extract the energy from the cavity 
quickly, and deliver it to the beam. SLED: A Method of Doubling SLAC’s Energy,

Z. D. Farkas, H. A. Hogg, G. A. Loew, P. B. Wilson.  
1974



Great, but…
• Output amplitude has a steep 

slope. 

• What if you want to accelerate two 
bunches with ~100 ns separation?  
They will end up with significantly 
different energies, which might not 
be what you want.  For example, in 
an FEL, wavelength is proportional 
to electron bunch energy, so it 
must be set precisely to meet user 
requirements. 

• Bunches with energy error aren't 
matched to the linac lattice, 
causing emittance blow-up.

𝝙E



Controlling the output pulse shape by 
modulating the input to the klystron
PULSE COMPRESSOR PHASE AND AMPLITUDE MODULATION

BASED ON ITERATIVE LEARNING CONTROL∗
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Abstract

This paper presents an alternative way to produce flat-
topped RF pulses at the pulse compressor output. Flat-
topped RF pulses are suitable for multi-bunch operation
where it is often required that beams experience the same ac-
celerating gradient. Moreover, the energy gain, in this case,
is less sensitive to timing jitters. The proposed approach is
based on Iterative Learning Control technique, which itera-
tively updates the input waveforms, in order to generate the
desired output waveforms.

INTRODUCTION

The SwissFEL machine, currently being constructed at
Paul Scherrer Institut, will provide a source of very bright
and short X-ray pulses. The SwissFEL C-band (5.712 GHz)
Linac consists of 26 Radio Frequency (RF) stations. Each
station is composed of a single klystron feeding an RF pulse
compressor and four accelerating structures. The pulse com-
pressor designed for the SwissFEL is based on a single Barrel
Open Cavity (BOC) which inherently has a high quality fac-
tor resulting in a significant energy storage capacity and a
relatively long filling time [1]. In the original form of pulse
compression, which is commonly referred to as the “phase
jump” regime, the input phase flips by 180◦, generating a
reflected wave transient into the acceleration structure. This
high power transient decays relatively slowly giving the RF
structure time to build up an accelerating gradient higher
than possible from the klystron alone. However, this RF
pulse shape is not suitable for multi electron-bunch opera-
tion where it is often required that all electron bunches see
the same amplitude and phase in the accelerating structure.
More complicated operation modes are also possible by re-
versing the phase very slowly which is referred to as the
“phase modulation”. With a continuously modulated phase,
the BOC output peak amplitude is lowered and flattened [2].
The SwissFEL RF drives operate in a pulsed mode at the rate
of 100Hz, using normal conducting accelerating structures.
The RF pulse length is of the order of 1-3µs and no digital
RF feedback loop is run within a pulse. Iterative learning
control (ILC) is a control technique for systems that oper-
ate in a repetitive manner [3]. In this method, the measured
waveform or trajectory is compared to the desired one to give
an error estimate, which is then used to update the inputs
for the next run. Therefore, for our problem, i.e. controlling
the pulse shape, an iterative approach is a good candidate.
Previously in [4], a model-free ILC algorithm was employed

∗ Work supported by Paul Scherrer Institut.
† aminre@ee.ethz.ch
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Figure 1: The simplified RF layout of a C-band RF station
in the SwissFEL beamline.

to flatten the klystron RF pulse. In this paper, an ILC-based
approach for producing flat-topped RF pulse is introduced,
which modulates both input phase and amplitude waveforms.
This method has been successfully applied on the RF pulse
compressor at the SwissFEL Linac test facility.

SYSTEM DESCRIPTION

The layout of a C-band RF station is illustrated in Fig. 1.
The RF signal source (5.7 GHz) is generated by a master
oscillator. The discrete sequences of the in-phase, I, and
quadrature, Q, components of the RF signal are fed into
the vector modulator to be up-converted. Each sequence
contains 2048 samples with sampling time of Ts = 2.4 ns.
The RF signal drives the klystron and finally, the high power
RF signal is split over four accelerating structures. The meas-
ured I and Q waveforms are used in the ILC controller to
produce the next I and Q inputs to the Digital-to-Analog
Converters (DAC). The control objective is to make flat
amplitude and phase pulses at the output of the pulse
compressor.

The ulse Compressor odel

The relation between klystron and pulse compressor
voltage is given by [2]

αVg = Vc + τV̇c, (1)

where Vg and Vc are respectively the klystron and pulse
compressor voltage phasors.
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SwissFEL’s solution: build a 
feed-forward system that 
measures the output from the 
cavity, digitizes I and Q 
waveforms, then determines a 
correction to apply to the 
klystron drive pulse.
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Abstract

This paper presents an alternative way to produce flat-
topped RF pulses at the pulse compressor output. Flat-
topped RF pulses are suitable for multi-bunch operation
where it is often required that beams experience the same ac-
celerating gradient. Moreover, the energy gain, in this case,
is less sensitive to timing jitters. The proposed approach is
based on Iterative Learning Control technique, which itera-
tively updates the input waveforms, in order to generate the
desired output waveforms.

INTRODUCTION

The SwissFEL machine, currently being constructed at
Paul Scherrer Institut, will provide a source of very bright
and short X-ray pulses. The SwissFEL C-band (5.712 GHz)
Linac consists of 26 Radio Frequency (RF) stations. Each
station is composed of a single klystron feeding an RF pulse
compressor and four accelerating structures. The pulse com-
pressor designed for the SwissFEL is based on a single Barrel
Open Cavity (BOC) which inherently has a high quality fac-
tor resulting in a significant energy storage capacity and a
relatively long filling time [1]. In the original form of pulse
compression, which is commonly referred to as the “phase
jump” regime, the input phase flips by 180◦, generating a
reflected wave transient into the acceleration structure. This
high power transient decays relatively slowly giving the RF
structure time to build up an accelerating gradient higher
than possible from the klystron alone. However, this RF
pulse shape is not suitable for multi electron-bunch opera-
tion where it is often required that all electron bunches see
the same amplitude and phase in the accelerating structure.
More complicated operation modes are also possible by re-
versing the phase very slowly which is referred to as the
“phase modulation”. With a continuously modulated phase,
the BOC output peak amplitude is lowered and flattened [2].
The SwissFEL RF drives operate in a pulsed mode at the rate
of 100Hz, using normal conducting accelerating structures.
The RF pulse length is of the order of 1-3µs and no digital
RF feedback loop is run within a pulse. Iterative learning
control (ILC) is a control technique for systems that oper-
ate in a repetitive manner [3]. In this method, the measured
waveform or trajectory is compared to the desired one to give
an error estimate, which is then used to update the inputs
for the next run. Therefore, for our problem, i.e. controlling
the pulse shape, an iterative approach is a good candidate.
Previously in [4], a model-free ILC algorithm was employed
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Figure 1: The simplified RF layout of a C-band RF station
in the SwissFEL beamline.

to flatten the klystron RF pulse. In this paper, an ILC-based
approach for producing flat-topped RF pulse is introduced,
which modulates both input phase and amplitude waveforms.
This method has been successfully applied on the RF pulse
compressor at the SwissFEL Linac test facility.

SYSTEM DESCRIPTION

The layout of a C-band RF station is illustrated in Fig. 1.
The RF signal source (5.7 GHz) is generated by a master
oscillator. The discrete sequences of the in-phase, I, and
quadrature, Q, components of the RF signal are fed into
the vector modulator to be up-converted. Each sequence
contains 2048 samples with sampling time of Ts = 2.4 ns.
The RF signal drives the klystron and finally, the high power
RF signal is split over four accelerating structures. The meas-
ured I and Q waveforms are used in the ILC controller to
produce the next I and Q inputs to the Digital-to-Analog
Converters (DAC). The control objective is to make flat
amplitude and phase pulses at the output of the pulse
compressor.

The ulse Compressor odel

The relation between klystron and pulse compressor
voltage is given by [2]

αVg = Vc + τV̇c, (1)

where Vg and Vc are respectively the klystron and pulse
compressor voltage phasors.
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• Looks pretty standard: convert the 
cavity output to IF, digitize, and 
demodulate to an I and Q 
representation digitally. 

• An “Iterative Learning Control” 
system calculates a function by 
comparing the measured I and Q to 
reference I and Q waveforms (they 
just want to make phase and 
amplitude constant over the output 
pulse duration, but could probably 
design a custom shape too) 

• Transfer function for RF amplifier 
chain + cavity is used to calculate 
new I and Q waveforms for klystron 
drive pulse.



Finding the transfer function 
for the system

Furthermore, α =
2β
β+1 , and β is the coupling coefficient

and τ is the filling time of the pulse compressor:

τ =
2Q0

(β + 1)ω0
, (2)

where Q0 is the unloaded quality factor of the pulse com-
pressor and ω0 is the angular frequency of the RF wave. To
derive equation 1, it has been assumed that the unloaded
quality factor is high. Thus 1/ω0 can be neglected with re-
spect to τ. Furthermore, Vg is assumed to be constant or to
change smoothly (i.e. V̇g ≪ ω0).

For the case where there is a difference between the pulse
compressor resonant frequency and the RF wave frequency,
Eq. 1 is replaced by the following equation:

αVg = Vc (1 + jτ∆ω) + τV̇c, (3)

where ∆ω = ω0 −ωc , and where ωc is the nominal angular
resonant frequency of the pulse compressor. This frequency
difference is introduced to remove the residual phase mod-
ulation as described in [2] by operating the klystron with a
lower frequency than of the accelerating structure. We refer
to this as detuning the BOC. The reflected wave from the
pulse compressor, given by Vr = Vc − Vg , is specified as
the output voltage phasor which corresponds to the voltage
fed to the accelerating structure. The reflected voltage is the
quantity that we are interested in.

ITERATIVE LEARNING CONTROL

Discretizing equation 3 with Euler backward method
(Ts ≪ τ) and taking the Z-transform, gives the following
transfer function, relating the klystron voltage to the output
voltage of the BOC:

GBOC (z) =
Vr (z)

Vg (z)
=

Ts (α − 1) − τ − jTsτ∆ω + τz
−1

Ts + τ + jTsτ∆ω − τz−1
,

(4)
where Ts is the sampling time. We model the RF drive chain
as a 1st-order low pass system with a bandwidth determined
by γ and a complex scalar gain K . Therefore, the total
transfer function from input to the system (DACs) to the
output voltage of the BOC is modeled as,

G(z) = K
1 − γ

1 − γz−1
GBOC (z). (5)

Using the lifted system representation, the output I and Q
signals are generated as follows,

yI + jyQ = GIQ

(

uI + juQ
)

, (6)

where GIQ is the lower-triangular Toeplitz matrix of the
impulse response h(k) derived from equation 5, i.e.,

GIQ =

!"""""
#

h(1) 0 · · · 0
h(2) h(1) · · · 0
...

...
. . .

...

h(N ) h(N − 1) · · · h(1)

$%%%%%
&

, (7)

where N denotes the number of samples in the flat-topped
region.

The GIQ can be split into real and imaginary parts as
GIQ = Gr + jGi , where Gr and Gi are real matrices. Hence,
the system dynamics are given by

y = Gu, (8)

where,

y :=

(

yI

yQ

)

, u :=

(

uI

uQ

)

, G :=

(

Gr −Gi

Gi Gr

)

.

To identify signals from different iterations, signals are
indexed with iteration counter as subscript. The pulse flat-
ness objective at iteration i + 1, can be expressed in terms
of the following cost function,

Ji+1(ui+1) = ∥yd − yi+1∥
2
Q + ∥ui+1 − ui ∥

2
R, (9)

where ∥ · ∥ are the weighted norms, and where yd denotes
the desired output vector which is given by the desired I and
Q waveforms:

yd =

(

yd I

ydQ

)

=

(

ad cos ϕd
ad sin ϕd

)

, (10)

where ad and ϕd are respectively the desired output am-
plitude and phase in the flat-topped region. We choose a
constant ϕd over the flat-topped region, while the desired
amplitude is smoothed and thus time-dependent (see [4]).

Taking the derivative of (9) with respect to ui+1 and set it
to zero, gives the the optimal input for the next iteration:

ui+1 = ui +
(

R + GTQG
)−1

GTQ (yd − yi ) ∀i ≥ 0.

(11)

In order to reduce the computational burden we take the
weight matrices, R and Q, constant. Thus, the inverse of the
matrix is calculated once and stored.

EXPERIMENTAL RESULTS

For the experiment, the pulse compressor is detuned, as
per (3), with the parameters given in Table (1). The iterative
learning algorithm is initialized with the phase jump mode.
That is, the input amplitude is constant over length N with
the phase flipped by 180◦. The input phase waveform is iter-
atively modified from a rapid 180◦ phase step to a smoothly
reversed phase (similar to the phase modulation regime).
Here, the klystron amplitude is slightly below the saturation
to give an enough headroom for the amplitude modulation.
Between each iteration, 10 output waveforms are captured
and filtered to suppress the noise. Since at each iteration
the shape of the amplitude waveform changes, some amount
of time is needed for the BOC temperature controller to
stabilize the temperature. Figure 2 shows the experimen-
tal result of ILC-based method after 20 iterations and the
comparison with the phase modulation approach. In the
phase modulation, the input phase waveform is analytically
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Where ⍺ is related to the cavity coupling coefficient, 𝜏 is the filling time 
of the pulse compressor.
The reflected wave from the pulse compressor is given by:

Furthermore, α =
2β
β+1 , and β is the coupling coefficient

and τ is the filling time of the pulse compressor:

τ =
2Q0

(β + 1)ω0
, (2)

where Q0 is the unloaded quality factor of the pulse com-
pressor and ω0 is the angular frequency of the RF wave. To
derive equation 1, it has been assumed that the unloaded
quality factor is high. Thus 1/ω0 can be neglected with re-
spect to τ. Furthermore, Vg is assumed to be constant or to
change smoothly (i.e. V̇g ≪ ω0).

For the case where there is a difference between the pulse
compressor resonant frequency and the RF wave frequency,
Eq. 1 is replaced by the following equation:

αVg = Vc (1 + jτ∆ω) + τV̇c, (3)

where ∆ω = ω0 −ωc , and where ωc is the nominal angular
resonant frequency of the pulse compressor. This frequency
difference is introduced to remove the residual phase mod-
ulation as described in [2] by operating the klystron with a
lower frequency than of the accelerating structure. We refer
to this as detuning the BOC. The reflected wave from the
pulse compressor, given by Vr = Vc − Vg , is specified as
the output voltage phasor which corresponds to the voltage
fed to the accelerating structure. The reflected voltage is the
quantity that we are interested in.

ITERATIVE LEARNING CONTROL

Discretizing equation 3 with Euler backward method
(Ts ≪ τ) and taking the Z-transform, gives the following
transfer function, relating the klystron voltage to the output
voltage of the BOC:

GBOC (z) =
Vr (z)

Vg (z)
=

Ts (α − 1) − τ − jTsτ∆ω + τz
−1

Ts + τ + jTsτ∆ω − τz−1
,

(4)
where Ts is the sampling time. We model the RF drive chain
as a 1st-order low pass system with a bandwidth determined
by γ and a complex scalar gain K . Therefore, the total
transfer function from input to the system (DACs) to the
output voltage of the BOC is modeled as,

G(z) = K
1 − γ

1 − γz−1
GBOC (z). (5)

Using the lifted system representation, the output I and Q
signals are generated as follows,

yI + jyQ = GIQ

(

uI + juQ
)

, (6)

where GIQ is the lower-triangular Toeplitz matrix of the
impulse response h(k) derived from equation 5, i.e.,

GIQ =

!"""""
#

h(1) 0 · · · 0
h(2) h(1) · · · 0
...

...
. . .

...

h(N ) h(N − 1) · · · h(1)

$%%%%%
&

, (7)

where N denotes the number of samples in the flat-topped
region.

The GIQ can be split into real and imaginary parts as
GIQ = Gr + jGi , where Gr and Gi are real matrices. Hence,
the system dynamics are given by

y = Gu, (8)

where,

y :=

(

yI

yQ

)

, u :=

(

uI

uQ

)

, G :=

(

Gr −Gi

Gi Gr

)

.

To identify signals from different iterations, signals are
indexed with iteration counter as subscript. The pulse flat-
ness objective at iteration i + 1, can be expressed in terms
of the following cost function,

Ji+1(ui+1) = ∥yd − yi+1∥
2
Q + ∥ui+1 − ui ∥

2
R, (9)

where ∥ · ∥ are the weighted norms, and where yd denotes
the desired output vector which is given by the desired I and
Q waveforms:

yd =

(

yd I

ydQ

)

=

(

ad cos ϕd
ad sin ϕd

)

, (10)

where ad and ϕd are respectively the desired output am-
plitude and phase in the flat-topped region. We choose a
constant ϕd over the flat-topped region, while the desired
amplitude is smoothed and thus time-dependent (see [4]).

Taking the derivative of (9) with respect to ui+1 and set it
to zero, gives the the optimal input for the next iteration:

ui+1 = ui +
(

R + GTQG
)−1

GTQ (yd − yi ) ∀i ≥ 0.

(11)

In order to reduce the computational burden we take the
weight matrices, R and Q, constant. Thus, the inverse of the
matrix is calculated once and stored.

EXPERIMENTAL RESULTS

For the experiment, the pulse compressor is detuned, as
per (3), with the parameters given in Table (1). The iterative
learning algorithm is initialized with the phase jump mode.
That is, the input amplitude is constant over length N with
the phase flipped by 180◦. The input phase waveform is iter-
atively modified from a rapid 180◦ phase step to a smoothly
reversed phase (similar to the phase modulation regime).
Here, the klystron amplitude is slightly below the saturation
to give an enough headroom for the amplitude modulation.
Between each iteration, 10 output waveforms are captured
and filtered to suppress the noise. Since at each iteration
the shape of the amplitude waveform changes, some amount
of time is needed for the BOC temperature controller to
stabilize the temperature. Figure 2 shows the experimen-
tal result of ILC-based method after 20 iterations and the
comparison with the phase modulation approach. In the
phase modulation, the input phase waveform is analytically
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Discretize the first equation and do the Z-transform (sort of a discrete 
Fourier transform), and you can find the transfer function for the cavity:

Relationship between klystron output voltage and compressor cavity 
voltage is:

RF drive (modulator, pre-amplifier, and klystron) are modeled as a 1st-order low 
pass system.  So, overall transfer function from DAC inputs to cavity output is:
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Fig. 4. The pulse compressor output amplitude and phase waveforms at the
SwissFEL RF station for the phase jump and phase modulation regimes. The
timing difference between Fig. 4 and 3 comes from the delay.

can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)
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can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)



I and Q representation
Using “lifted system representation” the equations can be 
written in an I and Q representation:
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can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)

where GIQ is a NxN “lower-
triangular Toeplitz matrix of the 
impulse response h(k)” derived 
from the transfer function.
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Fig. 4. The pulse compressor output amplitude and phase waveforms at the
SwissFEL RF station for the phase jump and phase modulation regimes. The
timing difference between Fig. 4 and 3 comes from the delay.

can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)

GIQ is then split into real and 
imaginary parts Gr and Gi such 
that GIQ = Gr + jGi: 
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where are weighted norms defined by the positive defi-
nite matrices X and R, and where denotes the desired output
vector which is given by the desired and waveforms:

(25)

where and are respectively the desired output ampli-
tude and phase in the flat-topped region. We choose a constant

over the flat-topped region, while the desired amplitude is
smoothed and thus time-dependent (see [10]),

(26)

where is the desired amplitude at the flat-topped region,
and and are chosen constants. Furthermore, the distur-
bance term can be estimated from the previous experimental
trial:

(27)

Substituting (27) into the cost function and removing the terms
independent of , leads to

(28)

which gives the optimal control input for the next iteration:

(29)

Note that the weight matrices and can be trial-
variant, but in order to reduce the computational burden we take
them to be constant. Thus, the inverse of the matrix is calculated
once and stored. Of course there should be upper and lower
bounds on the input signals (for both and input waveforms).
That is,

(30)

Fig. 5. The model and the BOC output measured and signals. The region
where the model applies is colored. The number of samples is 2048 with the
sampling time of ns.

Throughout this section, we assumed that the input-output
delay is already taken into account. The delay of the channel
must be precisely measured, otherwise the algorithm may run
into instability. The iterative control approach is summarized
in Algorithm 1.

Algorithm 1Iterative learning control

1: Initialize Phase jump regime: constant amplitude, phase
jump of 180

2: Do

3: Measure the output and waveforms

4: Compare to the reference trajectories, .

5: Update the input waveforms

.

6: Check the limits

7: If Convergence achieved

8: Stop

9: Repeat

V. EXPERIMENTAL RESULTS

The experiment parameters are given in Table I. For this ex-
periment, the pulse compressor is detuned, as per (3). Fig. 5 il-
lustrates the model response and the measured BOC output
and signals. The flat-topped region, where the ILC applies, is
colored and it contains samples. The iterative learning algo-
rithm is initialized with the phase jump mode. The initial input
to the DAC table is the phase jump waveforms with an addi-
tional linear phase with the slope equal to , if the phase
is in radians. The input phase waveform is iteratively modified
from a sharp step to a smoothly reversed phase. Here, the
klystron is operated slightly below the saturation to give enough
headroom for amplitude modulation. Between each iteration,
10 output waveforms are captured and filtered to suppress both

Comparison of the model’s 
predicted output vs. measured I 
and Q waveforms.



Cost Function
Stacking the I and Q terms, you get the following expression 
for the relationship between input and output signals:
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Fig. 4. The pulse compressor output amplitude and phase waveforms at the
SwissFEL RF station for the phase jump and phase modulation regimes. The
timing difference between Fig. 4 and 3 comes from the delay.

can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)

Where d is the output disturbance, which captures the 
uncertainty about the system.  The algorithm will make 
several iterations.  Measured output at an iteration ‘i’ is:
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Fig. 4. The pulse compressor output amplitude and phase waveforms at the
SwissFEL RF station for the phase jump and phase modulation regimes. The
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can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)

The optimization algorithm calculates the input for the next 
iteration (ui+1) as the solution of an optimization problem that 
minimizes the following cost function:
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can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)

X and R are positive NxN diagonal matrices. How are they 
determined?



Calculating the Optimal 
Input

The disturbance term can be estimated from the current 
iteration:
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where are weighted norms defined by the positive defi-
nite matrices X and R, and where denotes the desired output
vector which is given by the desired and waveforms:

(25)

where and are respectively the desired output ampli-
tude and phase in the flat-topped region. We choose a constant

over the flat-topped region, while the desired amplitude is
smoothed and thus time-dependent (see [10]),

(26)

where is the desired amplitude at the flat-topped region,
and and are chosen constants. Furthermore, the distur-
bance term can be estimated from the previous experimental
trial:

(27)

Substituting (27) into the cost function and removing the terms
independent of , leads to

(28)

which gives the optimal control input for the next iteration:

(29)

Note that the weight matrices and can be trial-
variant, but in order to reduce the computational burden we take
them to be constant. Thus, the inverse of the matrix is calculated
once and stored. Of course there should be upper and lower
bounds on the input signals (for both and input waveforms).
That is,

(30)

Fig. 5. The model and the BOC output measured and signals. The region
where the model applies is colored. The number of samples is 2048 with the
sampling time of ns.

Throughout this section, we assumed that the input-output
delay is already taken into account. The delay of the channel
must be precisely measured, otherwise the algorithm may run
into instability. The iterative control approach is summarized
in Algorithm 1.

Algorithm 1Iterative learning control

1: Initialize Phase jump regime: constant amplitude, phase
jump of 180

2: Do

3: Measure the output and waveforms

4: Compare to the reference trajectories, .

5: Update the input waveforms

.

6: Check the limits

7: If Convergence achieved

8: Stop

9: Repeat

V. EXPERIMENTAL RESULTS

The experiment parameters are given in Table I. For this ex-
periment, the pulse compressor is detuned, as per (3). Fig. 5 il-
lustrates the model response and the measured BOC output
and signals. The flat-topped region, where the ILC applies, is
colored and it contains samples. The iterative learning algo-
rithm is initialized with the phase jump mode. The initial input
to the DAC table is the phase jump waveforms with an addi-
tional linear phase with the slope equal to , if the phase
is in radians. The input phase waveform is iteratively modified
from a sharp step to a smoothly reversed phase. Here, the
klystron is operated slightly below the saturation to give enough
headroom for amplitude modulation. Between each iteration,
10 output waveforms are captured and filtered to suppress both

Which you can plug into the cost function to give:
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where are weighted norms defined by the positive defi-
nite matrices X and R, and where denotes the desired output
vector which is given by the desired and waveforms:

(25)

where and are respectively the desired output ampli-
tude and phase in the flat-topped region. We choose a constant

over the flat-topped region, while the desired amplitude is
smoothed and thus time-dependent (see [10]),

(26)

where is the desired amplitude at the flat-topped region,
and and are chosen constants. Furthermore, the distur-
bance term can be estimated from the previous experimental
trial:
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Substituting (27) into the cost function and removing the terms
independent of , leads to
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which gives the optimal control input for the next iteration:
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Note that the weight matrices and can be trial-
variant, but in order to reduce the computational burden we take
them to be constant. Thus, the inverse of the matrix is calculated
once and stored. Of course there should be upper and lower
bounds on the input signals (for both and input waveforms).
That is,
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Fig. 5. The model and the BOC output measured and signals. The region
where the model applies is colored. The number of samples is 2048 with the
sampling time of ns.

Throughout this section, we assumed that the input-output
delay is already taken into account. The delay of the channel
must be precisely measured, otherwise the algorithm may run
into instability. The iterative control approach is summarized
in Algorithm 1.

Algorithm 1Iterative learning control

1: Initialize Phase jump regime: constant amplitude, phase
jump of 180

2: Do

3: Measure the output and waveforms

4: Compare to the reference trajectories, .

5: Update the input waveforms

.

6: Check the limits

7: If Convergence achieved

8: Stop

9: Repeat

V. EXPERIMENTAL RESULTS

The experiment parameters are given in Table I. For this ex-
periment, the pulse compressor is detuned, as per (3). Fig. 5 il-
lustrates the model response and the measured BOC output
and signals. The flat-topped region, where the ILC applies, is
colored and it contains samples. The iterative learning algo-
rithm is initialized with the phase jump mode. The initial input
to the DAC table is the phase jump waveforms with an addi-
tional linear phase with the slope equal to , if the phase
is in radians. The input phase waveform is iteratively modified
from a sharp step to a smoothly reversed phase. Here, the
klystron is operated slightly below the saturation to give enough
headroom for amplitude modulation. Between each iteration,
10 output waveforms are captured and filtered to suppress both
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The experiment parameters are given in Table I. For this ex-
periment, the pulse compressor is detuned, as per (3). Fig. 5 il-
lustrates the model response and the measured BOC output
and signals. The flat-topped region, where the ILC applies, is
colored and it contains samples. The iterative learning algo-
rithm is initialized with the phase jump mode. The initial input
to the DAC table is the phase jump waveforms with an addi-
tional linear phase with the slope equal to , if the phase
is in radians. The input phase waveform is iteratively modified
from a sharp step to a smoothly reversed phase. Here, the
klystron is operated slightly below the saturation to give enough
headroom for amplitude modulation. Between each iteration,
10 output waveforms are captured and filtered to suppress both

From which the optimal input for the next iteration can be 
calculated:
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and signals. The flat-topped region, where the ILC applies, is
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to the DAC table is the phase jump waveforms with an addi-
tional linear phase with the slope equal to , if the phase
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Fig. 6. The BOC output amplitude and phase waveforms of the ILC-based and
the phase modulation methods on the detuned pulse compressor.

Fig. 7. The klystron input amplitude and phase waveforms for the phase mod-
ulation and ILC methods. The dashed line denotes the klystron saturating am-
plitude.

random noise as well as the repetitive non-IQ demodulation pat-
terns. Since at each iteration the amplitude pulse shape is modi-
fied, some amount of time should be considered for the BOC
temperature stabilization unit. Especially, during the early it-
erations, the waiting time between two consecutive iterations
is relatively large, as the amplitude waveform changes signif-
icantly. Fig. 6 shows the experimental result of the ILC-based
method (after 20 iterations) and the comparison with the phase
modulation method. The difference in waveforms, generated
by phase modulation, between Fig. 6 and 4 comes from de-
tuning the pulse compressor. The updated input amplitude and
phase waveforms are plotted in Fig. 7. The output phase can
be changed by adding an offset to both input phase waveform
and the desired flat-top phase . According to Fig. 7, there is
no significant change in input average power. Fig. 8 illustrates
the standard deviation of amplitude and phase pulses over the
flat-topped region, as a good measure of pulse flatness. Com-
paring the performance of the two methods of ILC and phase

Fig. 8. The standard deviation of the BOC output amplitude and phase pulses
over the flat-topped region.

Fig. 9. The amplitude waveform at the flat-topped region for different itera-
tions. The desired amplitude waveform is depicted in red. The phase modula-
tion method gives the dashed blue trajectory.

Fig. 10. The phase waveform at the flat-topped region for different iterations.
The offsets are removed in order to compare the ILC-based and the phase modu-
lation methods. The phase modulation method gives the dashed blue trajectory.

modulation, the relative standard deviation of amplitude is re-
duced by a factor of 9 and for the phase by a factor of 12 in the
ILC-based approach. Fig. 9 and 10, respectively, illustrate the
RF amplitude and phase over the flat-topped region for different
iteration numbers, and a comparison with the phase modulation
approach. As the iteration proceeds, the waveforms approach

For each iteration, I and Q is measured over ten beam 
pulses, to suppress noise.  After the input waveform is 
updated, the algorithm pauses for a while to let the cavity 
temperature re-equilibrate.



Klystron Input Waveform 
Before and After Optimization
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B. Phase Modulation
From (1) and the fact that the reflected voltage is

, we can derive the following differential equation
governing the system dynamics:

(4)

where is normalized up to a gain factor. For simplicity in
the phase modulation analysis, the dynamics of the klystron and
other LLRF devices are ignored. We will subsequently take the
RF dynamics into account in Section IV.
In this approach, the input amplitude is kept constant, i.e. we

take . Furthermore, the input phase also remains
constant before starting the phase modulation. Hence, the initial
input voltage is,

(5)

with zero phase and unit amplitude.
The output voltage of the pulse compressor can be readily

calculated using (4),

(6)

Thus, the reflected voltage rises exponentially,

(7)

until it reaches,

(8)

where is the beginning time of the phase modulation, or in
the phase jump regime, it is the time when the phase is flipped
by .
At the time , the input phase jumps to which is

less than 180 degrees,

(9)

From the equation dynamics in (4), we have a direct
feed-through term of , i.e. the change of is opposite to
the change of . This implies that any changes in the input
voltage are directly translated to the output by the feed-through
term. To see this, one can replace the derivative terms by their
finite difference approximations:

(10)

For infinitesimally small , the voltage jumps have the fol-
lowing relationship,

(11)

Fig. 3. The input amplitude and phase waveforms for the phase jump and phase
modulation regimes.

Therefore, at the time when the phase modulation starts, there
is a jump in the output voltage determined as follows,

(12)

where and , denote respectively the amplitude
and phase of the output voltage at time . Since the output am-
plitude is to be constant, it can be expressed as

(13)

for until the end of the klystron pulse. Substituting (13),
the input voltage and the derivatives into the differential equa-
tion (4), yields

(14)

Separating the imaginary and real terms, we have,

(15)

where the time index is removed for notational simplicity. Equa-
tions (15) are nonlinear first order differential equations which
can be solved numerically with the initial conditions on
and . The value for is already calculated in (12).
Fig. 3 illustrates the applied input signals used in phase jump

and phase modulation modes on an RF station at the SwissFEL
Linac test facility. In both methods, the input amplitude remains
constant. The input phase trajectory in phase modulation mode,
shown in Fig. 3, is the solution to the differential equation in
(15). The measured output signals are plotted in Fig. 4. As we
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Fig. 7. The klystron input amplitude and phase waveforms for the phase mod-
ulation and ILC methods. The dashed line denotes the klystron saturating am-
plitude.

random noise as well as the repetitive non-IQ demodulation pat-
terns. Since at each iteration the amplitude pulse shape is modi-
fied, some amount of time should be considered for the BOC
temperature stabilization unit. Especially, during the early it-
erations, the waiting time between two consecutive iterations
is relatively large, as the amplitude waveform changes signif-
icantly. Fig. 6 shows the experimental result of the ILC-based
method (after 20 iterations) and the comparison with the phase
modulation method. The difference in waveforms, generated
by phase modulation, between Fig. 6 and 4 comes from de-
tuning the pulse compressor. The updated input amplitude and
phase waveforms are plotted in Fig. 7. The output phase can
be changed by adding an offset to both input phase waveform
and the desired flat-top phase . According to Fig. 7, there is
no significant change in input average power. Fig. 8 illustrates
the standard deviation of amplitude and phase pulses over the
flat-topped region, as a good measure of pulse flatness. Com-
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Fig. 9. The amplitude waveform at the flat-topped region for different itera-
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tion method gives the dashed blue trajectory.

Fig. 10. The phase waveform at the flat-topped region for different iterations.
The offsets are removed in order to compare the ILC-based and the phase modu-
lation methods. The phase modulation method gives the dashed blue trajectory.

modulation, the relative standard deviation of amplitude is re-
duced by a factor of 9 and for the phase by a factor of 12 in the
ILC-based approach. Fig. 9 and 10, respectively, illustrate the
RF amplitude and phase over the flat-topped region for different
iteration numbers, and a comparison with the phase modulation
approach. As the iteration proceeds, the waveforms approach

Before After

(Phase modulation is an alternative scheme mentioned in the paper, where the 
phase waveform is analytically determined in advance, and programmed into the 

modulator.  It is shown for comparison to the ILC approach.)

‘Phase jump’ waveforms are used as a starting point for the algorithm.



Cavity Output Waveforms 
After Optimization
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Fig. 6. The BOC output amplitude and phase waveforms of the ILC-based and
the phase modulation methods on the detuned pulse compressor.

Fig. 7. The klystron input amplitude and phase waveforms for the phase mod-
ulation and ILC methods. The dashed line denotes the klystron saturating am-
plitude.

random noise as well as the repetitive non-IQ demodulation pat-
terns. Since at each iteration the amplitude pulse shape is modi-
fied, some amount of time should be considered for the BOC
temperature stabilization unit. Especially, during the early it-
erations, the waiting time between two consecutive iterations
is relatively large, as the amplitude waveform changes signif-
icantly. Fig. 6 shows the experimental result of the ILC-based
method (after 20 iterations) and the comparison with the phase
modulation method. The difference in waveforms, generated
by phase modulation, between Fig. 6 and 4 comes from de-
tuning the pulse compressor. The updated input amplitude and
phase waveforms are plotted in Fig. 7. The output phase can
be changed by adding an offset to both input phase waveform
and the desired flat-top phase . According to Fig. 7, there is
no significant change in input average power. Fig. 8 illustrates
the standard deviation of amplitude and phase pulses over the
flat-topped region, as a good measure of pulse flatness. Com-
paring the performance of the two methods of ILC and phase

Fig. 8. The standard deviation of the BOC output amplitude and phase pulses
over the flat-topped region.

Fig. 9. The amplitude waveform at the flat-topped region for different itera-
tions. The desired amplitude waveform is depicted in red. The phase modula-
tion method gives the dashed blue trajectory.

Fig. 10. The phase waveform at the flat-topped region for different iterations.
The offsets are removed in order to compare the ILC-based and the phase modu-
lation methods. The phase modulation method gives the dashed blue trajectory.

modulation, the relative standard deviation of amplitude is re-
duced by a factor of 9 and for the phase by a factor of 12 in the
ILC-based approach. Fig. 9 and 10, respectively, illustrate the
RF amplitude and phase over the flat-topped region for different
iteration numbers, and a comparison with the phase modulation
approach. As the iteration proceeds, the waveforms approach

REZAEIZADEH et al.: AN ITERATIVE LEARNING CONTROL APPROACH 845

Fig. 4. The pulse compressor output amplitude and phase waveforms at the
SwissFEL RF station for the phase jump and phase modulation regimes. The
timing difference between Fig. 4 and 3 comes from the delay.

can see, the BOC output amplitude is lowered and relatively
flattened. However, since the dynamics of the klystron and the
RF drive chain are usually ignored in the analytical approach,
the output amplitude is not perfectly flat. As stated earlier, the
output phase in the phase modulation regime, can be flattened
by operating the klystron with a lower frequency than of the
accelerating structure. This can be achieved by adding a linear
phase to the input phase waveform of the klystron. The resonant
frequency of the pulse compressor should be slightly moved
according to the introduced frequency shift. The resonant fre-
quency of the BOC is controlled via the device temperature.

IV. ITERATIVE LEARNING SCHEME

In the phase modulation regime, the model-system mismatch
leads to non-flat pulses. In this section, we develop an iterative
learning control algorithm to improve the RF pulse flatness. In
the proposed ILC approach, the algorithm is initialized with the
phase jump mode and iteratively updates the input waveforms
to achieve flat-topped amplitude and phase pulses.
Discretizing (3) with Euler backward method (with sampling

time ) and taking the Z-transform, lead us to the transfer
function, relating the klystron voltage to the output voltage of
the BOC:

(16)

We model the RF drive chain, including the vector modulator
and pre-amplifier, as a 1st-order low pass system with a band-
width determined by and a scalar gain that can be com-
plex in general to capture the loop phase. Therefore, the overall
transfer function from the DAC inputs to the measured voltage
at the BOC output is modeled as

(17)

Note that to derive (17), we assume that the input-output delay is
already taken into account in the measurements. Using the lifted
system representation, the system equations can be formulated
as

(18)

where , , and are, respectively, the DAC
and waveforms and the measured and waveforms at the
BOC output. The matrix is the lower-triangular
Toeplitz matrix of the impulse response derived from (17),
i.e.,

...
...

. . .
...

(19)

where denotes the number of samples in the flat-topped re-
gion. The can be split into real and imaginary parts as

, where and are real matrices. Hence,
the system equations are given by

(20)

Stacking the and terms into super-vectors, we get the fol-
lowing expression for the system input-output relationship,

(21)

where,

and where is the output disturbance which we assume it also
captures the uncertainty about the system. We denote by sub-
script to be the iteration counter to identify signals from dif-
ferent iterations. At trial th, the measured output is given by

(22)

Where we assume that the output disturbance term is trial-in-
variant. The algorithm proposed here calculates the control
input for the -th iteration as the solution of an optimiza-
tion problem,

(23)

and the pulse flatness objective at iteration , is expressed in
terms of the following cost function,

(24)

Before After

(Compare ‘phase jump’ before to ‘ILC based’ after)



Remarks and Questions
• Authors report losing about 20% of the potential energy gain by using 

this flattening scheme, which is a pretty steep cost. 

• “10 output waveforms are captured and filtered to suppress both 
random noise as well as the repetitive non-IQ demodulation patterns.”  
What are the details of this filtering?  Just averaging? 

• Not much discussion of the stability of this system, besides “the delay 
must be precisely measured, otherwise the algorithm may run into 
instability”.  With fancy digital control, how easy is it to determine the 
stability conditions?  Is it even possible? 

• The algorithm seems to be something that runs until it converges, and 
then it stops.  How often does it need to run?  Will drifting environmental 
conditions for klystron and cavity invalidate the learned pulse shape?



Extensions
• They use reference I and Q waveforms which give 

a flat phase and amplitude.  How well will this 
scheme work for arbitrary phase and amplitude 
waveforms?  Could you create custom waveforms 
with finely-tuned bunch energy and/or phase 
differences?  (You’d still have some issues with 
bunch energies not being matched to the lattice, so 
there are some external limits to how far you can 
go.) 


